ООО «КИАНИТ»

АППАРАТ ТРЕХСТУПЕНЧАТЫЙ ДЛЯ ГАШЕНИЯ ИЗВЕСТИ (ГИДРАТОР)

Пояснительная записка

Директор ООО «КИАНИТ» _____ А.В. Нестеров 25.02.2016

2. Общие указания

Трехступенчатый аппарат для гашения извести (гидратор) используется в технологической схеме гашения извести состоящей из узла подачи сырья, собственно аппарата для гашения извести, устройства подачи воды, фильтра очистки отходящих газов, разгрузочного устройства. В технологическую схему могут также входить устройства для домола и классификации гидратной извести, а также бункеры, питатели и затарочные машины.

В настоящем описании рассматривается собственно аппарат и возможные технологические схемы производства гашеной извести.

В качестве сырья используется дробленая известь размером кусков до 20 мм. Допустимо использование молотой извести размером частиц менее 100 мкм, если в процессе гидратации исключена агрегация материала.

3. Техническая характеристика

Техническая характеристика гидратора приведена в таблице 1.

Таблица 1

Наименование показателя	Значение
1. Производительность по готовой продукции (гашеная известь)	4 тонны в час
2. Качество гашеной извести (ГОСТ 9179-77)	
Активность (CaO + MgO)	64-67%
Содержание MgO	3-5%
Содержание фракции менее 90 мкм	95%
Влажность	0,5–1%
3. Характеристика сырья	
Известь негашеная дробленая или молотая	0 - 20 mm
Активность (CaO + MgO)	82-86%
Содержание MgO, не более	5%
Температура и время гашения (ГОСТ)	96°С, 1-2 мин

Продолжение таблицы 1

4. Характеристика аппарата	
4.1 Габаритные размеры аппарата с фильтром, мм	
Длина	6500
Ширина	1200
Высота	7500
4.2 Magaa wyazara awyanaza wa	14000
4.2 Масса пустого аппарата, кг	14000
4.3 Масса заполненного аппарата, к	19000
4.4 Установленная мощность, кВт	78
в том числе:	
Мощность электродвигателя каждой секции, кВ	15
Мощность э/д вытяжного вентилятора, кВт	15
Мощность э/д загрузочного и шнека, кВт	7,5
Мощность э/д выгрузочного шнека, кВт	7,5
Мощность насоса для подачи воды, кВт	3,0
4.5 Расход негашеной молотой извести	
(активность. 84%), т/час	3,0
4.6 Расход воды общий, т/час	3,0 1,4-1,53
в том числе:	
на гашение извести	0,98
испаренная вода	0,55
4.7 Расход воды на охлаждение	
(при наличии встроенного теплообменника), м ³ /час	5-6
4.8 Расход влажного газа на фильтр, м ³ /час	750-950
4.9 Поверхность фильтрации рукавного фильтра, м ²	60
4.10 Расход сжатого воздуха на регенерацию	0,2
фильтроткани, м ³ /мин	
4.11 Запыленность отходящих газов, не более, мг/м ³	20

Основные расходные показатели аппарата на единицу продукции приведены в таблице 2.

Таблица 2

Наименование показателя	Значение
1. Расход негашеной извести, т/т	0,75
2. Расход воды в аппарат, т/т	0,5
3. Расход воды на холодильник (при его наличии), м ³ /т	1,5
4. Расход электроэнергии, кВт.час/т	12

4. Эксплуатационная информация

Гашеная известь получается добавлением воды к обожженной извести: такой процесс называется гашением (гидратацией) извести. Химическая реакция, имеющая место в процессе гидратации (гашения) представлена следующей формулой:

$$CaO + H_2O = Ca (OH)_2 + 15,6$$
 ккал/моль CaO $56 + 18 = 74$ (молекулярный вес).

Таким образом, для гашения 1000 кг негашеной извести в пересчете на 100% CaO требуется 322 кг воды. В действительности, поскольку химическая реакция экзотермическая, для полного завершения процесса гашения требуется больше воды, так как часть воды испаряется.

При гашении 1 моль оксида кальция выделяется 65,4 кДж тепла, что составляет1160 кДж на 1 кг СаО. Этого тепла достаточно, чтобы нагреть гидратную известь до 550 °C, однако при атмосферном давлении из извести начинает интенсивно испаряться вода, понижая температуру гашения до 96-98 °C.

При гашении на первой ступени аппарата происходит обильное образование пылепароводяной смеси, которая поступает на очистку в рукавный фильтр. Выделение водяного пара происходит и во второй ступени аппарата, однако уже менее интенсивно.

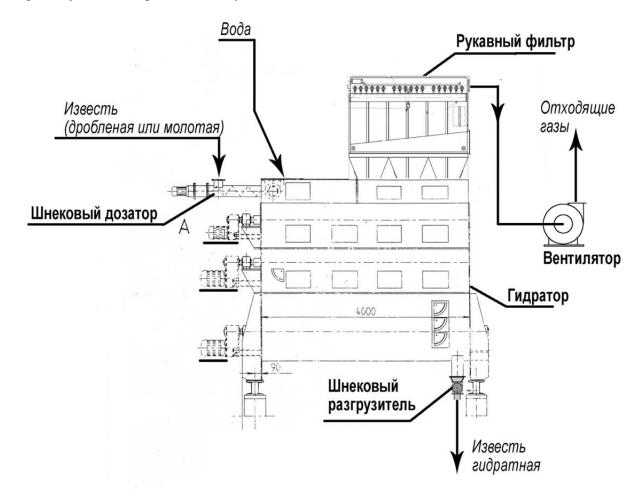


Рис. 1. Общий вид-аппарата для гашения извести

Эффективность процесса гашения напрямую зависит от реактивности и качества исходной негашеной извести. Чем более реактивная известь поступает в аппарат, тем больше его производительность.

Общий вид аппарата для гашения извести представлена на рис. 1.

Измельченная до крупности менее 20 мм известь из бункера подается в аппарат для гашения извести шнековым дозатором. Электродвигатель шнекового питателя (дозатора) управляется частотным преобразователем. Таким образом, расход извести в аппарат регулируется частотным преобразователем, который предварительно тарируется.

Процесс гашения происходит в трехступенчатом гидраторе:

1-я ступень (гидратор) - смешение воды и извести и транспортировка на вторую ступень.

2-я ступень (гомогенизатор) - здесь завершается процесс гашения извести. пар поступает через пересыпной канал на первую стадию.

3-я ступень (холодильник) – гашеная известь охлаждается холодным воздухом перед выгрузкой и нагретый воздух поступает на рукавный фильтр для очистки от известковой пыли.

Вода для гашения извести подается в аппарат насосом дозатором типа НД-2500 (3 кВт, 1410 об/мин) из специальной емкости. В аппарате установлен разбрызгиватель (ороситель), который равномерно распределяет воду на поверхность извести. Расход воды регулируется вентилем, а расход регистрируется электронным водомером типа ИМ-2300М.

В первой ступени гидратора негашеная известь интенсивно смешивается с водой, при этом происходит процесс гашения и выделяется большое количество тепла и запыленной парогазовой смеси. Образовавшийся пар частично конденсируется на теплообменных элементах (на схеме не показано), однако большая часть пара, смешанного с воздухом из нижних секций поступает на очистку в рукавный фильтр.

Рукавный фильтр установлен сверху на первой секции гидратора, имеет 60 рукавов из специального полотна, поверхность фильтрации 60 $\rm m^2$. К фильтру подсоединен вентилятор BP 132-30-6.

Вентилятор управляется частотным преобразователем, позволяя поддерживать в гидраторе оптимальное разряжение.

На второй стадии происходит гомогенизация и продолжается процесс гашения. Скорость перемещения материала в каждой секции можно изменять частотными преобразователями, подключенными к двигателям.

В третьей самой нижней части аппарата происходит охлаждение гидратной извести холодным воздухом, который поступает со стороны выгрузки материала за счет разряжения в аппарате и регулируется задвижкой.

Установка для производства гашеной извести оснащена контроллером, который управляет процессом. Контроллер контролирует все аварийные ситуации системы и выводит все основные параметры системы на экран компьютера. Предусмотрен ручной и автоматический режим работы.

Проект АСУТП участка гашения извести не входит в объем настоящей документации

6. Технологическая схема участка гашения извести

Существуют различные варианты технологической схемы гашения извести. В основном для гашения используют дробленую известь 0-20 мм с активностью 65-85%. При гашении известь превращается в порошок, а примесные минералы и непогасившиеся зерна извести остаются в виде крупных частиц. Далее возможны варианты схемы с использованием воздушного классификатора или грохота.

На рис. 2 представлена схема с использованием грохота. Известь из аппарата после гашения поступает на грохот с размером сита 5 мм. Нижняя фракция с грохота поступает в шаровую мельницу, где домалывается до необходимого качества (< 100 мкм), а верхняя фракция отправляется в отвал. Данная схема позволяет перерабатывать негашеную известь с невысокой активностью.

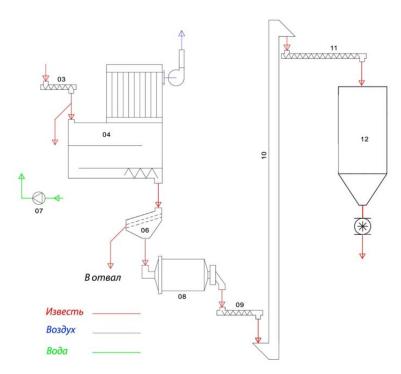


Рис. 2. Схема гашения извести с удалением непогасившихся зерен в отвал

Молотая гашеная известь с влажностью меньше 1% ковшовым элеватором загружается в силос (рекомендуемая емкость силоса 90 м³). Гашеная известь хранится в силосе и направляется на затарку в мешки или мягкие контейнеры МКР (беги).

Meaf

В производственном помещении должна быть выполнена аспирация мельниц, элеваторов и мест пересыпки извести на транспортерах.

Генеральный директор OOO «КИАНИТ», к.т.н. Моб. +7 921 947 0458

Факс. (812) 6128451 E-mail: <u>anest126@mail.ru</u> http://www.kianit.ru

http://www.processes-apparates.ru

Skype: anest126

Нестеров А.В.